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Momentum Transfer Theorem for Inelastic Processes

E. Gerjuoy

University of Pittsburgh, Pittsburgh, Pennsylvanis

ABSTRACT

;2‘§CP4J}
Recently it has been shown that for potential scattering, the
well known optical theorem--relating the total cross section to the
imaginary part of the forward scattering amplitude--can be generalized
to yield a "momentum transfer cross section theorem." The present paper
further generalizes the previous potential scattering result. Specific-
ally, it appears that the momentum transfer cross section theorem is wvalid
also for many-particle sf;tems, wherein inelastic processes occur. Al-
though this last assertion probably holds quite generally, a proof is
given only for the collisions of electrons with atomic hydrogen. The
proof takes into account electron indistinguishability, as well as the

possibility that the incident electron ionizes the atom, but assumes the

forces are not spin-dependent.
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I. Introduction and Summary

Recentlyl I have shown that for potential scattering, the

momentum transfer cross section
2
og = [an'(1-gog") [A(z > p") | (1)
can be expressed in the form

1 #3V
05 = ——=|dr¥ iy 2
d QEI ~ 3z ( )

In the above equations: A(E > g') is the amplitude for elastic scattering
from initial direction n to final direction n'; E = E2k2/2m is the kinetic

energy; the Hamiltonian is
K2

H=T+V===v2+V(); (3)

the potential V(r) is not necessarily spherically symmetric, i.e., V(z)

need not equal V(r); the wave function ¥ satisfies
(H-E)Y = 0 (4)
subject to the boundary condition (when n is along the z-direction)
¥ = X2 4 o(r) (5)
where

elkr

lim ¢ = A(n > ') ] (6)

r
NPT
when n is not parallel to z, dV/3z in Eq. (2) is replaced by n-grad V.

For potential scattering the result (2) is a generalization of the

optical theorem

o= fds'lA(g+g')|2=l—%ImA(3+g). (7



It is known, however, that the optical theorem remains valid in many-
particle collisions involving inelastic processes. Similarly, it appears
that the momentum transfer cross section theorem (2) remains valid even
when inelastic processes can occur. Of course, some modification of the
right side of (2) is necessary in a many-particle collision. Also, one
must generalize the definition (1) of the momentum transfer cross section
0gq-

Because a proof of the momentum transfer cross section theorem for
arbitrarily complicated colliding systems would be awkward and hard to
follow (mainly because the notation gets correspondingly complicated), I
shall content myself here with carrying out the proof for the simple case

of e-H scattering. In this case the momentum transfer theorem has the form

1 3V
O3 = —= Jdr Y% —/— ¥
a " 2, Jag %2, (8)

where Ej = 52k02/2m is the incident kinetic energy; zy is the z~-coordinate
of the two electrons in the system; and the quantities V, ¥, o3 are defined
respectively by Egs. (12), (1L) and (56) below. This proof for e-H
scattering makes it fairly obvious that a similar momentum transfer theorem
holds for electron scattering by more complicated atoms, and makes it plausi-
ble that a corresponding momentum transfer theorem continues to hold for
collisions between more complex aggregates of fundamental particles, e.g.,
for molecule-molecule scattering.

In connection with the above paragraph, the following remarks,
concerning assumptions made in the proof, shall be noted. The proof in-
cludes the effects of particle indistinguishability and electron exchange,
i.e., the wave function is antisymmetric under exchange of electron space
and spin coordinates. However, the spin-dependent part of the wave function
is factored out, i.e., it is assumed that all components of the total spin

are separately conserved, which in turn implies that the Hamiltonian is



spin-independent, There is little doubt that a momentum transfer theorem
remains valid for spin-de p endent interactions, but carrying through the

proof would require taking into account the properties of the eigenfunctions
under time~reversal; considering only the spatially dependent part of the wave
function, as is done here, avoids this complication. Another complicstion
which is ignored in the following proof of (8) is the effects of Coulomb forces
on the asymptotic behavior of the continuum wave function solving the many-
particle Schrodinger equation, More precisely, although ionization is included
in the possible inelastic p?ocesses contributing to momentum transfer, it is
assumed that the Hamiltonian is effectively a free=particle Hamiltonian when
the particles are infinitely separated. It is easily seen that this assumption
is inconsequential for (8) when the free-particle plane waves can be replaced

by Coulomb functions as, e.g., in excitation of H~ by electrons, or ionization
of H~ by a neutral particle, In more complex situations, e.g., ionization of
H or H by electrons, there is no reason to think the momentum transfer theorem
fails, but it must be admitted that the detailed asymptotic behavior of the
wave function has not been examined in circumstances such as these, where two
or more charged particles go out to infinity in the center of mass system. Fin-
ally, the proof wholly ignores radiative processes,

The possible utility of (8) has been discussed previouslyol Bearing
on its utility, and relevant aiso to the discussion of the preceding paragraph,
is the fact that the right side of (8) apparently diverges whenever electrons
are incident on ions, e.g., H o The source of the divergence can be understood
by examining elastic scattering in a fixed Coulomb potential V = C/r, Substi-
tuting (5) in (2), which now is applicable, one sees that integration over angles
annihilates the matrix element of 3V/3dz = =C cose/r’ between ei¥% ang e-ikzo The

-ikz .
matrix element of 3V/3z between e and ¢ need not vanish, however , and in this



matrix element the integral over r is divergent at r = », Moreover, this
divergence is to be expected, because for Coulomb scattering, directly from

the fundamental definition (1)

93 ~ 52; sin6(1 = cos®) csch(6/2) (9)
diverges logarithmically at 6 = 0,

The following remarks are also worth noting, The proof of (8) given
here indicates that in a sense the momentum transfer cross section theorem is
a generalization--to continuum eigenfunctionse-~of the so-called hypervirial
theoremso2 In fact the proof of (8) is based on a wholly time-independent
(wherein transition probabilities are never explicitly introduced) treatment3
of many particle collisions involving rearrangement, In this treatment the
cross section is computed, using Green's theorem, from the flow of probability
current across the surface at infinity in the 3n~dimenSional space spanned by
.fl’ o0as Tny where the collision involves n particles in all, and r; is the posi-
tion vector of the ith particle, Consequently, to derive the theorem (8) via
the more conventional operator techniques--~which are based on a time-dependent
transition probability formalism wherein contributions from the wave function
at infinite distances are taken into account implicitly rather than explicitly--
would require a very different approach; in fact, it probably will be necessary
to essentially redo the Lippmann-Schwingerh or related derivations5 of the scat-
tering amplitude, starting as those derivations start, but examining the time-

evolution of the momentum transport as well as of the total wave amplitude,.



II. Review of Time-Independent Formalism

Especially when ionization can occur, to make the proof of
the momentum transfer theorem understandable , it is desirable
to review some results of the time-independent treatment. As explained
above, I confine my attention to the scattering of electrons by atomic
hydrogen in the ground 1ls state ¢,. The atomic hydrogen eigenfunction ¢,(r),

WA
of energy €j, obeys

_$2 2 .

The spatially dependent part of the total wave function describing the

collision is W(EI’EZ)’ which satisfies Eq. (4) with

n= Bv2. B v24 vy ,r S (11)
1™ o 2 r1.X2)
2 2 2
e ey aa
1 2 "Vl ~2‘
and obeys

The upper sign in Eq. (13) applies to singlet scattering; the lower sign to
triplet scattering. In what follows I shall use the plus sign only, but
it is easily verified that the proof can be just as readily carried through

for triplet scattering.

Outgoing Current and the Total Cross Section

Ignoring the long-range character of the potential, the singlet Y

can be written in the form

¥(r,,r,) = eXoBF 4,(r,) + eMoB' T2y (r)) + o(z,.1,) (1k)



vhere ¢(£1,£2) is everywhere outgoing and obeys

®{r1:z,) = o(rpnr). (15)

rl—b w||n'
where H2k,2 h?k;
£ = _559'— +€O = — + ej (17)

It is easily seen that, as one expects for singlet scattering,

Aj = fJ + g (18)

where fJ and g'j are respectively the ordinary and exchange amplitudes for
collisions leaving the atom in the state ¢Jo

Eq. (16) yields no information about the behavior of & when r,,r

172

each become infinite. However, the everywhere outgoing property also implies3

. , , eiKr
lim 2riagy) = Ao >k 'k ") 5/2 (19)
r
ry > =||n}
r, > =llnj
rl/r2 = q = constant
2 2 2 2 2
where RN B0l Ry (209
E="2n =™ on
r=(r?+ r22)l/2 = r1(1+qz)l/2 (21)
Kr,n,' ot
- 151 K(l+q2) 2 Bl'
. (22)
Kron,' =
k' = 22 = Kq(14¢?) 2 5,



The total cross section, including ionization as well as excitation,

is

= m .
s m—;idsy‘g’ (23)

integrated over the surface of the six dimensional sphere at infinity in_gl,rz

space, where the six-dimensional current vector‘g has components
7. = B(o%v 0 - ov,0%)
~l 2mi 1 1
(24)

- ﬁ * *
d, = 5r(0*V,0 - 0V ,0%)

In (24) J, represents the three components of J along i,.J,, k;, i.e., along
the usual right-handed basis defining the I subspace of I,>L, space,

Simarly'gé represents the three components of‘g along i Corres-

2’22’ 52.
pondingly, in (23) the outward drawn six-dimensional normal to the sphere

at infinity has components

($=]

(25)

"1';\"'{ "i“_"i
)
N -

Excitation and JTonization Cross Sections

The result (23) is basic to the time-independent treatment of many-
particle collisions, and is not evident. 1In fact, Eq. (23) amounts to
accepting the postulate that (24) represents the current operator conserving
probability flux in many-particle collisions, just as the usual formula (7)
for the total cross section in potential scattering implies acceptance of
the usual one-particle current operator [of which Eq. (24) is the obvious
generalization]. Nevertheless the correctness of (23) is not in question,
since it can be shown that the accepted expressions for the rates of

excitation and ionization follow from (23).



To amplify this last assertion, note that on the sphere at infinity
the surface elements dS (and correspondihg 3) are of two essentially differ-
ent types, namely: surface elements 4S5 where one of T T, is infinite, but
not the other; and those 4S5 forming a manifold of higher dimensionality than
the first type, where r1 and r2 are each infinite., It has been proved3
that the contribution to (23) from surface elements of the first type, with

r > and r, finite, reduces to

integrated over the surface S1 of the three-dimensional sphere at infinity

in r,-space, vhere

v_ B«
25 "EE(ZJ Vlzj-zjvlzj*) (27)

and
z;(x,) = fd£2¢3*(52)¢(£1,,1:2) (28)

integrated over all r,. Of course in (26)1gis the normal to dSl,&nd,gj(sl)

is evaluated at infinite r, = r;n'. Using (16), therefore, (26) yields

k
§ Eii-f dB'|AJ(B > B‘)Iz = %'Oex (29)

where 0., obviously is the total cross section for excitation, including
elastic scattering (J = 0). The left side of {29) is only half Ogy DE-
cause (26) has not included the contribution to (23) from surface elements
with r, » « and r; finite; by virtue of (15) the contributions from

ry » o , r, finite and ry + » , r; finite must be equal. Correspondingly,
one sees that the right side of (23), which must represent the total out-
going current divided by the incident current per unit area is correctly
multiplied by (2hko/m)_1,because each of the first two terms on the right

side of (1k4) corresponds to an incident current density'ﬁko/m.
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The contribution to (23) from surface elements dS where r, and r,

are each infinite must be the ionization cross section %on® In fact, for

K real [E > 0 in (17) and therefore capable of ionizing the atom]}, this

contribution is, using Eqs. (19) and (21) - (25)

- ——l g'_s.. 1] L 2
%on 2k, frs KIA(B > k'K 2)l (30a)
l k 'zk 1] 2
| = 5 Jay gy a2l la(n > k)| (300)
K
where I have used3
r5(12

as dadn, 'dn,’ (31)

(14q2)3 "
The right side of Eq. (30b), which still is subject to Eq. (20), is not
altered in value if one multiplies by 6(E'-E), and then integrates over an
infinitesimal range dE' about E' = E. Thus, using Eq. (20) to find dE' in

' terms of dk,', Eq. (30b) becomes

.
L oion 2k0 mK3

P =

fd}h'%z"s(E"E)lA(B 5 51 (32)

where now 51', 52' range over all real values, with E' defined by the right

side of Eq. (20).

| Eq. (32) is the desired expression for Oiopn° When the symmetry
requirements of particle indistinguishability are ignored, e.g., when the
second term on the right side of (14) is dropped in the definition of V¥,

it can be seen that3

L.
e
¥
=
L
3
o]
¥

om\ 3e=317/L JE 5/2
') = k ! »XK ') (33)
2 (1'12) o/E 2n/-§i ~ o~

where T is the usual transition amplitude

(i > £) = [y () vy, (34)
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from initial to final states. In this unsymmetrized case, therefore,
realizing that the factor 1/2 must be dropped because now the incident
current density is only 5ko/m, Eq. (32) takes the familiar form

_m 2t 1
ion Eko K (2“)5

o

jdgl'dEZ'G(E"E)lT(B + ,151',52'”2 (35)

In the symmetrized case, where all terms in Eq. (1l4) are retained, one also
can retain Eq. (33), in which event Eq. (35) again holds provided 1/2 is
restored. The expression (34) for T(i -+ f) is not valid in the symmetrized

case however.
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III. Proof of Momentum Transfer Theorem

With the foregoing results in hand, the desired momentum transfer
cross section theorem can be derived. As in the simpler case of potential

scatteringl
- * * =
fdg(HW) plzw + fdr? pleW 0 (36)

where: W(;l,gz) is the function defined by Egs. (14) and (15); Eq. (11)
defines H; Py, = (h/i)a/azl is the z-comporent of the mrmentum of particle
1; the z-direction now is supposed to coincide with the incident direction
n; and dr = dgldgz signifies integration over all Iys Iye Again as
previously,1 to keep the integrals in (36) convergent, the integration
volume may at first be supposed to equal the interior of a six-dimensional
sphere (in ri» I, space) of finite though very large radius. Whatever the
integration volume, Eq. (36) is true because ¥ satisfies Eq. (4).

Using (11), Eq. (36) becomes

-h? %(p2 sp2 YO¥ _ 2 4+ g2)y]* X\ 4 fqprendly =
o J3E | ¥*(72 #7205 - [(97 + v2)¥]* L j};wgz—lw o (37

with V given by (12). The next step is to substitute (14) into the first
integral of Eq. (37), thereby obtaining eighteen independent pairs of
terms under the integral sign. Most of these pairs vanish, however.

For example,

-ikgn'r; 2 9_ikenery, (p )
[ar {eTHoRE o*(r,)V] 3z, ° Lodrs)

a 3 . Y | .
- [5;? el¥ol £1¢o(r2)]er ikon £1¢g(r2) =0

because

(V2 + x2)e FoBE; < o, (38)
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Also, holding r, fixed and employing Green's Theorem in the three-

2

dimensional I,-space, one sees that

-ik.n°*r 2 9 ik ner,,
Idrl r, {e ox ~2¢g(r1 Ve e Ox ~1¢o(r2)

1321
9 ik _ner -ik ner
R -, = a1 2 -
[azl e 0 ¢>°(r2)]V1 e 2¢o(r ) 0

because ¢o(r1) is exponentially decreasing as ri » «; similarly, pairs
of terms involving Vg and ¢o(r2) are seen to vanish after employing Green's
Theorem in r,-space.

In this fashion, Eq. (37) yields

9 ikoner ] ikoner
* on*rj - [ onR*Il 2%
far (¢ Vz—elaZ} ~ ¢o(r2) [azl e ¢0(r2)]Vld>

+ de e-ikoBﬂ31¢§(r2)V% %%I - 221 v2 ~-ik n-rl¢*(r2)

+ Jar{ oxv; 5';1' elhon: 2¢(r1) - i‘ elkog.gz%(rx)]vg@{}_

* o TR R vz B - 8 0 TRy

+ [ar <p*(v%+v§)g: --——(V2+V2)¢} - %2321- Jary* —g—z—: ¥ = 0, (39)

Reduction to Surface Integrals

Green's theorem in I,-space can be employed in the first integral

of Eq. (39). Thus, using (16), this first term reduces to

{ f 3 _ik.n°r 9__iksner
e { ¥V, % 08 Al 1 - [ et A1 *
Jd}:zjdg} J v’;azi ¢O<r2) [3Z1 ¢O(I‘2)]V1¢ }
= [ag, - {A.*(non’ )——————-v1 -g——elkon I -[321 e NORE1 g A% (nun' Y (ko)
1 1

]

where d5, = rf dn' is the surface element on the sphere at infinity in

3-dimensional r - space. Similarly, the second term in (39) reduces to



1k

3 ikyr ikor -3 .
101 g Aolpont)S ST g (o) Sy OB ()

3
z 1 1 1

fasy e e~ 1¥oD"
~

Using Green's Theorem in r,-space, the third integral in (39)

becomes

-ikyr, 906 (T1)

far,fas,. § ¢;<51>A*<n'>e
J j ™

3 r, 9z v, etkon 2
1

a¢0(r1) e-ikjrz

- — elk°5'£2¢;(51)VzA;(5')

3z (h2)

ra2

where dS, = r% dn'. The quantity Aj(g') in (42) is identical with AJQE*E')

defined in (16) because

lim fd51¢;(£1)°(£1’52) = lim fd£2¢;(£2)¢(52s£1)
rz—) eo| ‘B‘ r1+ ml ‘Ll'
_ (43)
r,= 0 ry =9 )
. , elkjp
= lim [arpe(zo)e(risre) = Aj(pen' )=
A
r)> «||p'
r = o

The first equality in (43) simply interchanges the labeling on r,,r,; the
second equality makes use of (15). I now observe that when kj # ky

the integral in (L2) oscillates infinitely rapidly at infinite r,, and gives
no net contribution when averaged over any small range of incident energies.

Hence the terms kj # k_ are inconsequential, and can be dropped from (42).

But the remaining term kJ = ko vanishes after integration over p;, because
3/3z, has odd parity. Thus the expression (42), which equals the third integral
in (39), vanishes. Similarly, the fourth integral in (39) vanishes.

The fifth integral in (39) is evaluated using Green's Theorem in

I,»X, space. As explained in connection with Eq. (23), the surface

2

elements at infinity in X,» L,-Space are of the following different types:

(a) r, >, T, remains finite; (b) r, > e, r remains finite; (c) both
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ry, ¥y » o Then, as in Egs. (26)-(29), the contribution from surface

elements of type (a) to the fifth integral in (39) is

-ikjr, 3 ikgry
dr,[dS - #(p, )A%(n' ) E——L g (r,)=— A, (n' )=
f~2f ~1 jz,:l?, ¢J L2 3 ry 1 ¢2. ~2 9z A~ r;
a t eikg'rl * % ] e-ikqul
- [oplndesr Aala )~—;—1——]v1¢3(52)Aj(g )—~-——-r1 (Lka)
-iksr 3 ikjr
_ . w(oary € 971 (A€ 1
Jdsy ) Aj(g ) = L A (B
J 1 1 1
iksr -iksr
- [ A (n' )Ly a(nr )L (Lhb)
dzy I~ ryootyvoom )

The expression (Lka) is simply the contribution to the fifth integral of
{39) made by the terms involving V2, The expression {LUb) equals (Lla) by
virtue of the orthonomality of the ¢j(5270 Even if ¢j(32) were not an

orthogonal set, however, the terms kj # ¥ in (44) would be inconsequential,

L
just as in Egq. {(42).

The contribution to the fifth integral of (39) from surface elements
of type (b) {described in the preceding paragraph) is simply the contribu-
tion to that integral made by the terms involving V%. This contribation,
which also involves a double sum over j, £ as in (L4LLa) vanishes because:

(i) terms kg # k, are inconsequential; (ii) the fact that 3/9z; has odd

parity eliminates terms kj =k There remains the contribution to the

L°
fifth integral of (39) from surface elements of type (c). As in Eq. (23),

this contribution is

-iKr 3 3 elKr ca eiKr 3 *e-lxr
o 7 -l A SR M (u5)
r3/2 3r 3z; rd/2 z,  .5/270r £5/2

i

Jas { a8

where r is defined by Eq. (2L1); A = A(9+§£, 5&) defined by Egs. (19)-(22);
dS is given by Eq.(31); and I have recognized that vV = vi1°¥1+v2°¥> =3/9r
(v as in Egqs. (23) and (25), vy the six-dimensional gradient operator in

Iy, I,-space).
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Surface Integrals Evaluated

The first five integrals in (39) have been reduced to (L40), (L1},
(4bb) and (45). I now shall evaluate these surface integrals. Using Eq.
(12) of Reference 1, one sees (just as in the case of potential scattering)

that (L40) and (L41) together yield
fdg' hﬂiko(n°3')6(5-3')[Ag(gfg')—AoQg*gj)] = 8nk,Im AO(B*E). (L46)
The expression (Lib) obviously reduces to
-1 2k§ qu'(3°2f)|Aj(gfg')|2° (47)
J
Using (21), (22) and (31), the expression (45) is seen to equal
Y . Z g r
~2f38 |a|2k2 AL = _2;2% |A|2K2(pep) )=+ = -zfii% lal?k(n-x]). (48)
rd r r r r

Thus, since (30a) can be put in the form (32), the right side of (L8)

--which equals (45)--can be expressed as

'th’ ' 1 ' ' 1 ery]2
3)dsy asy8(E'-E) (nek) [A(mok] k) |2 (49)
m

~

I next note that the definitions (22) imply the magnitudes ki,ké of

5{,%; obey the relations

k' (q71) = k) (aq)
1 =1 ' (SO)
ky(q7) = kj(a)
Consequently, directly from the definition (19)
¢ eiKr
lim ¢(r),r,) = A(nak!n',k'n') (51)

27271 1%1 7 p5/2

r, > “"9;

r, > <||n}

2

rz/r1 = q71
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where ki,k} are kj(q),kj(q) of Eq. (22). Using (15), Eq. (51) can be

rewritten as

° iKr
Lim  e(rz,ry) = Alp * Ko ki) G577 (52)
r, > °°| |Ei
r, * “|!B§
r,/r, = q

Hence, because r,, r, are just dummy variables in Eqs.(19) and (52),

those equations imply

A(E”}_{ s é) =A(§,"}§iaki) (53)

L

Obviously, with indistinguishable electrons, the actual amplitude for
ionization must obey a relation like (53). It seemed desirable to show
that (53) indeed does follow from the definition of A, however; moreover,
the fact that (53) can be proved supports the interpretation of the many-
particle current operator (discussed in section II), which interpretation
led to the relations (30)-(32) between o;,, and A. Relabeling the dummy

variables 5; and gé in (49), and using (53), one sees that (45) equals

-2k?
mK 3

Jaxhak]6(E'-E)(nk}) |A(n>k) k] ) |2

£2
= -i;g Jak1dk}S(E'-E)(n k] + thé)lA(E?hi’5§)|2 (54)

Expressions for o. and o.

d

In the present e-H scattering problem, using (29) and (32), the

total cross section is

ks 2
o = 1 Eay Iy 1? + g Jagagsr-m lagey g 12 (9
J
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Correspondingly, the definition (1) of the momentum transfer cross section

generalizes to

= 17 3 fap'lx k Sz 1A (p)) |2
ko J Ky

PO S dk{dk3S(E'~E) [k -k *n-kj°n] [A(mk] k) [2 (56)
ko 2ko mK I 2 A A2l l a2l 222 [

When multiplied by the incident velocity Eko/m, the first term on the right
side of (56) obviously represents the rate (in units of the initial
momentum ﬁko, to keep the dimensions of o4 equal to length squared) with
which momentum along the incident direction D is being transferred in ex-
citation processes, including elastic scattering. Similarly, the last

term in (56) obviously represents the momentum transfer by ionization,
recognizing that when ionization occurs hoth electrons simultaneously carry
awvay momentum.

The generalization of (7) to the present problem is
= — Im Ag(n>n) .5T)
MN\

where o is given by (55), and A, as always is the elastic forward scatter-
ing amplitude. In other words, although the particles are indistinguishable
and A involves both ordinary and exchange amplitudes via (18), the optical
theorem has exactly the same form as if the particles were distinguishable.

If a proof of (57) is desired, it can be obtained by stamting from
- [ar(Hy)*y + [ary*ny = 0 (58)

instead of (36), and then reducing (58) to surface integrals along the lines
employed earlier in this section.

Returning now to Eq. (39), the first five integrals in (39) have
been reduced to the sum of (46), (47) and (54). Therefore, using (57),

(39) vields
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Using (55) to eliminate o0, and dividing by 2k§; one sees that Eq. (59)
implies Eq. (8).

There remains one point to be discussed before concluding this
paper, namely th e 2affect of including Coulomb functions rather than plane
waves in (14). Using Coulomb functions in (lh$ means the asymptotic form
of (16) must be modified by inclusion of an extra factor!, proportianal

to exp(-in 1nkjr1), where n'j is proportional to k"l° Once this factor is

J J

included, the proof which has been given goes through essentially as in

the plane wave case, except that one must include derivatives of

exP(-injlnkjrl} at infinity. But these derivatives, like the derivatives

-1

of r ~1 itself, are of higher order in r

1 and so can be neglected at

infinite T . This Justifies the assertion, in section I, that the momentum
transfer theorem should apply, e.g., to excitation of H™ by electrons.

The argument in this paragraph also suggests the momentum transfer
theorem will remain valid in, e.g., ionization of H™ by electrons; for a
more definitive statement, however, it is necessary to know how Eq. (19)
must be modified when two electrons go out to infinity in the field of the
proton (fixed at the origin). The reader is reminded, moréover, of the re-
mark in section I that the right side of (8) apparently diverges for e=H~
collisions. 1In electron-ion collisions, therefore,Eq. (8) (whether or not
it is essentially valid) is not likely to be very useful without imposition

of suitable cutcffs.
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